Search for the Chiral Magnetic Effect with Charged Hadrons

Gang Wang (UCLA)

5-9 October 2015 Central China Normal University

1

Outline

Motivation

- Experimental Results
 - Chiral Magnetic Effect (CME)
 - Chiral Magnetic Wave (CMW) -----
 - Chiral Vortical Effect (CVE)

Phys. Rev. Lett. 103(2009)251601 Phys. Rev. C 81(2010)54908 Phys. Rev. C 88(2013)64911 Phys. Rev. C 89(2014)44908 Phys. Rev. Lett 113(2014)052302 Phys. Rev. Lett 110(2013)012301

Phys. Rev. Lett 114(2015)252302 PRL Editors' Suggestion

Outlook

Big Bang & Little Bangs

Vacuum transition may occur on a large scale or a small scale.we can learn from the Little Bangs

QCD vacuum transition

D. Diakonov, Prog. Part. Nucl. Phys. 51, 173 (2003)

$$N_L^f - N_R^f = 2Q_W, \ Q_W \neq 0 \rightarrow \mu_A \neq 0$$

QCD vacuum transition nonzero topological charge chirality imbalance (local parity violation)

Chiral Magnetic Effect

Chiral Magnetic Effect (CME): finite chiral charge density induces an electric current along external magnetic field.

 $j_V = \frac{N_c e}{2\pi^2} \mu_A B \Rightarrow$ electric charge separation along *B* field

D. E. Kharzeev, L. D. McLerran, and H. J. Warringa, Nuclear Physics A 803, 227 (2008)

Local Parity Violation + CME

$$\frac{dN_{\pm}}{d\phi} \propto 1 + 2a_{\pm} \cdot \sin\left(\phi^{\pm} - \Psi_{RP}\right)$$

A direct measurement of the *P*-odd quantity "*a*" should yield *zero*.

Visual evidence: fluctuation

γ correlator

STAR experiment

Charge separation signal

- $\gamma_{os} > \gamma_{ss}$, consistent with CME expectation
- signal in Cu+Cu larger than Au+Au: later-stage effect?
- Consistent between different years (2004 and 2007)
- Confirmed with 1st-order EP (from spectator neutron v_1)
- Not explained by known event generators

Short range correlations

200 GeV Au+Au: 40 - 60% ×10⁻³ S Cor b 1.5 3 same charge same charge $\mathbf{C} \equiv \langle \cos(\Delta \phi_{\alpha}) \cos(\Delta \phi_{\alpha}) \rangle$ $\mathbf{C} \equiv \langle \cos(\Delta \phi_{\alpha}) \cos(\Delta \phi_{\alpha}) \rangle$ $\mathbf{S} \equiv \langle \sin(\Delta \phi_{\alpha}) \hat{\mathbf{S}} \sin(\Delta \phi_{\beta}) \rangle$ $\mathbf{S} \equiv \langle \sin(\Delta \phi_{\alpha}) \sin(\Delta \phi_{\alpha}) \rangle$ 2 0.5 opposite charge in blue opposite charge in blue-0 -0.5 -1.5 0.6 0.8 0.4 1.8 1.2 1.4 1.6 1.8 0.2 0.4 0.6 0.8 1 2 Phys. Rev. C 88 (2013) 64911 |△p_| (GeV/c) Shaded bands are systematic errors. $\Delta\eta$

- Prominent correlations exist at small Δp_T and $\Delta \eta$
- Probably due to HBT+Coulomb

S

C

Modulated sign correlator (msc)

• robust after removing HBT+Coulomb effects with kinematic cuts ($\Delta \eta$ and Δp_T)

• γ weights different azimuthal regions of charge separation differently

• Modify γ such that all azimuthal regions are weighted equally

• γ is reduced to modulated sign correlator (msc)

• The charge separation signal is confirmed with msc

Phys. Rev. C 88 (2013) 64911

12

Charge multiplicity asymmetry correlator

-0.6

50

charge) is equivalent to MSC

% Most Central

Charge multiplicity asymmetry correlator

- A condition on observed v_2 is applied to remove flow-related bg.
- Previously, when $v_2^{obs} = 0$, the signal was consistent with zero!
- Now, new measurements with higher statistics report finite signal: 7σ !
- Beam energy dependence also looks similar to that of γ .

Beam Energy Scan

Phys. Rev. Lett 113 (2014) 052302

At lower beam energies, charge separation starts to diminish.

Flow-related background

Phys. Rev. Lett 113 (2014) 052302

A. Bzdak, V. Koch and J. Liao, Lect. Notes Phys. 871, 503 (2013).

Transverse momentum conservation

$$\gamma = -\frac{1}{N_{\text{tot}}} \frac{\langle p_t \rangle_{\Omega}^2}{\langle p_t^2 \rangle_F} \frac{2\bar{v}_{2,\Omega} - \bar{\bar{v}}_{2,F} - \bar{\bar{v}}_{2,F} (\bar{v}_{2,\Omega})^2}{1 - (\bar{\bar{v}}_{2,F})^2},$$

A. Bzdak, V. Koch and J. Liao, Lect. Notes Phys. 871, 503 (2013).

$$\delta = -\frac{1}{N_{\text{tot}}} \frac{\langle p_t \rangle_{\Omega}^2}{\langle p_t^2 \rangle_F} \frac{1 + (\bar{v}_{2,\Omega})^2 - 2\bar{\bar{v}}_{2,F} \, \bar{v}_{2,\Omega}}{1 - (\bar{\bar{v}}_{2,F})^2},$$

we have introduced certain weighted moments of v_2 :

$$\bar{v}_2 = \frac{\langle v_2(p_t, \eta) p_t \rangle}{\langle p_t \rangle}, \quad \bar{\bar{v}}_2 = \frac{\langle v_2(p_t, \eta) p_t^2 \rangle}{\langle p_t^2 \rangle}.$$

If our measurements are dominated by this type of background,

$$\gamma / \delta \approx 2 \overline{v}_{2,\Omega} - \overline{\overline{v}}_{2,F}$$

where F and Ω denote averages that are calculated for all particles in the full phase-space, or for all actually measured particles in the restricted phase-space, respectively.

$v_2, \overline{v}_2 \text{ and } \overline{\overline{v}}_2$

The ratios of the p_T -weighted v_2 over conventional v_2 are almost constant over centrality.

$v_{2,\Omega}$ and $v_{2,F}$

centrality	ν _{2,Ω} (%)	v _{2,F} (%)	ν _{2,F} /ν _{2,Ω}
3-15%	3.17	2.66	0.84
15-25%	5.04	3.97	0.79
25-50%	6.21	4.87	0.78

к due to TMC

Other effects like Local Charge Conservation (LCC) and resonance decay may lead to smaller κ (closer to unity).

CME contribution

$$H^{\kappa} = (\kappa v_2 \delta - \gamma) / (1 + \kappa v_2)$$

A. Bzdak, V. Koch and J. Liao, Lect. Notes Phys. 871, 503 (2013).

- κ is roughly contained in the range of [1, 1.5].
- CME signal (ΔH) decreases to 0 from 19.6 to 7.7 GeV
- Probable domination of hadronic interactions over partonic ones
- Need more study of $\boldsymbol{\kappa}$ and more statistics

Deformed nuclei: U+U

• Similar signals in U+U

- Use $\gamma_{OS}\text{-}\gamma_{SS}$ to quantify the signal
- N_{part} accounts for dilution effects
 - A dedicated trigger for events with 0-1% spectator neutrons
 - With magnetic field suppressed, the charge separation signal (mostly background) disappears, while v_2 is still ~2.5%

Extrapolate to intermediate centrality? **Isobar collisions may work better.**

What we learned so far

- signal of charge separation w.r.t RP
 - comfirmed with different EP types (1st- and 2nd-order)
 - remain in Au+Au, Cu+Cu, Pb+Pb and U+U
 - persist from 19.6 GeV to 2.76 TeV
 - repeated with reduced correlators
 - robust when suppressing HBT+Coulomb
 - removal of flow-related bg doesn't kill signal
- signal seems to disappear when
 - the collision energy is down to ~7.7 GeV
 - B field from spectators is supressed (v_2 is still sizable)

Does the initial B really impact the final-stage particles?

any evidence?

Study of initial E-field via v₁@CuAu

A. lordanova, RHIC&AGS2013

Au

- Sizable E-field pointing from Au to Cu
- Expect charge-dependent directed flow
 - electric conductivity of QGP
 - relavent to CME/CMW
 - quark/anti-quark creation time

Are the E/B fields strong enough and long enough to leave an imprint?

W.T. Deng and X.G. Huang, Phys.Lett. B742,296 (2015)

v₁@Cu+Au

Expect charge-dependence of directed flow due to a dipole deformation Y. Hirono, M. Hongo and T. Hirano, PRC 90, 021903(R)

Outlook: Isobars

- Isobars are atoms (nuclides) of different chemical elements that have the same number of nucleons.
- For example, ⁹⁶₄₄Ruthenium and ⁹⁶₄₀Zirconium:
- Up to 10% variation in B field

	⁹⁶ 44Ru+ ⁹⁶ 44Ru	VS	⁹⁶ 40Zr+ ⁹⁶ 40Zr
Flow		~	
CMW		>	
CME		>	
CVE		=	

Isobars: multiplicity

- Almost identical distributions of multiplicity (MC Glauber)
- The ratio is close to 1 except for 0-10% most central events
- Zr is a little deformed (β_2 =0.2), and Ru is spherical (β_2 =0.05)

Isobars: B field

- Clear difference in the B field for the same centrality
- The ratio is close to 1.1 for peripheral events
- Reduces to 1.07 for central events

Isobars: charge separation

- Projection from 1.2B events shows difference in ΔH
- The ratio is 5σ above 1 (3σ with 400M events)
- If it's v_2 -driven, the ratio will follow eccentricity (~ 1)

Outlook: Cu+Au

Suppressed γ signal of charge separation in Cu+Au collisions?

Backup slides

Isobars: B field

- Which B quantity is sensitive to the charge separation?
- The ratio is similar in term of ~ B^2 for 20-60% collisions
- B•cos($2\Delta\phi$) may be more realistic, with a bigger difference
- We use B_y for simplicity 1.30 B_y 1.25 B_y 1.25 B_y 1.20 $B Cos[2(\psi_B - \psi_2)]$

Au+Au 200 GeV

- $\Delta H \cdot N_{part}$ is a roughly linear function of B² for Au+Au 200 GeV.
- The 20-60% isobar collisions covers [4, 10] in the x axis.

Excellent tracking

Dilution effect

In the quark-gluon medium, there could be multiple *P*-odd domains.

<a>>

The net effect is like a *random walk*, but one-dimensional.

What do we know about the position R_n after *n* steps? R_n follows a Gaussian distribution: mean = 0, and $rms = \sqrt{n}$

Our measurement of PV is like R_n^2 , expected to be *n*. Compared with going in one fixed direction, where $R_n^2 = n^2$, the "random-walk" measurement is diluted by a factor $\sim n \sim N_{part}$.

